
BHDL: A Lucid, Expressive, and Embedded Programming
Language and System for PCB Designs

Hebi Li†, Youbiao He†, Qi Xiao§, Jin Tian† and Forrest Sheng Bao†
†Dept. of Computer Science, § Dept. of Electrical and Computer Engineering

Iowa State University, Ames, IA, 50011, United States
Email: {hebi, yh54, qxiao, jtian}@iastate.edu, forrest.bao@gmail.com

Abstract—Graphical PCB design tools like KiCAD lack support for
high-level abstraction such as functions and loops. To improve PCB design
productivity, we hereby present BHDL, a programming framework for
PCB designs. In its compact and declarative syntax, schematics and
layouts can be modeled effectively and expressed concisely. Treating
all circuits, even a resistor, as functions, BHDL naturally supports
modularized development that builds a complex design up from smaller
designs hierarchically. As an embedded Domain Specific Language
(eDSL), BHDL allows users to leverage the full feature of the host
language for customization and extension. Our Jupyter kernel supports
web-based, REPL-style development and generates auto-placed PCBs.

Index Terms—Electronic Design Automation (EDA), Computer-Aided
Design (CAD), Printed Circuit Board (PCB), Hardware Description
Language (HDL), Programming Language (PL), Automatic Placement

I. INTRODUCTION

Printed Circuit Boards (PCBs) have been dominantly designed with
graphical Electronic Design Automation (EDA) tools such as KiCAD
and EAGLE. Although graphical EDA tools have the advantage of
intuitive interface and rich visualization, they lack abstractive and
efficient representation of circuits. As a result, PCB designs are prone
to be hard to maintain, share, and reuse. A recent study [1] finds that
PCB engineers often complain about the low abstraction level of
current EDA tools, which makes PCB design significantly tedious.

Unlike graphical EDA tools, Hardware Description Languages
(HDLs) allow engineers to define circuits using computer programs.
Such abstraction improves development efficiency. The popularity of
the VHDL [2] and Verilog [3] languages in digital IC and FPGA
development have inspired the study into HDLs for PCBs. PHDL [4]
is a description language that compiles to a netlist of connected
component. JITPCB [5] introduces a declarative language embedded
in a general-purpose language Stanza [6]. Pursued as proprietary
software [7], documentation about the language syntax and semantics
is very limited. SkiDL [8] and PCBDL [9] are two Python modules
for PCB designs.

However, these existing HDLs for PCBs all fall short in certain
aspects in the PCB design workflow. PHDL and JITPCB only allows
expressing non-bus connections as netlists, which can be verbose
and hard to verify and update. Limited by Python, SkiDL, and
PCBDL programs cannot be declarative, making them inconvenient
and verbose for describing circuits. This also makes it challenging
to modularize, especially when hierarchically, a complex design into
smaller user-designed circuits in SkiDL and PCBDL. No existing
systems, except JITPCB, support layout co-design where the user
specifies constraints for placing circuit components on a board.
Without layout support, the PCB design stays at schematics.

Li, He, and Bao’s work in this paper is partially supported by NSF grants
MCB-1821828 and CNS-1817089. Corresponding author: Forrest Sheng Bao.

To facilitate a more effective PCB design workflow, we propose
BHDL (standing for Board HDL), a declarative, simple, modular, and
expressive HDL and system, in this paper. BHDL is designed as an
embedded Domain Specific Language (eDSL) inside the modern and
highly-regarded programming language Racket [10]–[12]. Domain
specific for PCBs, BHDL is declarative to focus on only the necessary
components to define a circuit so that programs can be concise and
effortlessly readable. BHDL introduces only a handful of structures
and keywords to smooth the learning curve for new users.

To support modularized design, all circuits, even the simplest
discrete parts like a resistor, are modeled as functions and can be
easily parameterized and called to form bigger circuits. BHDL is
expressive despite being a simple DSL, because it has access to the
rich language features of the host language like functions and loops.
For example, we can create an array of pushbuttons using a for-loop
or create different test versions of a circuit using an if-statement easily
instead of drawing several, highly-overlapping schematics (Fig. 9 and
Section II-E). Users also have native access to the enormous software
libraries of the host language ecosystem.

BHDL provides a simple and intuitive syntax for expressing circuit
connections naturally. In addition to the net syntax for expressing
netlist, BHDL also provides the series, parallel, and bus
syntax for making series/parallel wires and to connect a bus of pins.
All connection syntax in BHDL can be mixed and nested in arbitrary
depth to express complex circuits in a concise and hierarchical
manner. Besides, BHDL supports in-place anonymous part creation
inside the connection syntax, instead of referring to a previously
defined part instance. We present the complete and formal syntax
and their well-defined formal semantics.

PCBs are tightly coupled with physical layouts. Without layout
support, the PCB design stays at schematics. BHDL supports layout
design in two complementary ways. First, BHDL supports the co-
design of the physical layout directly in the language. In particular,
BHDL provides simple and relative layout combinators namely
hstack, vstack, rotate and at. These layout combinators are
local, facilitating hierarchical designs where smaller circuit layouts
can be directly used in composing larger circuits. In addition to
programmatic layout co-design, we also adapt state-of-the-art VLSI
auto-placers [13], [14] to find appropriate locations for free parts,
with simple and effective improvements for PCBs.

The development model of BHDL is interactive and incremental,
follows the Read-Eval-Print Loop (REPL) [15] or interactive scripting
model. BHDL is shipped with the Jupyter [16] notebook environment
for easy coding, running, and visualization, as shown in the screen-
shot in Fig. 11. Our framework generates placed PCB board. The
board can then be routed using the open-source FreeRouting [17]
tool to produce the final PCB for manufacturing. Our framework is
open source at https://bhdl.org

978-1-6654-3274-0/21/$31.00 © 2021 IEEE

https://bhdl.org

II. BHDL SYNTAX AND SEMANTICS

We begin introducing the BHDL language using a simple RC
circuit in Fig. 1. The formal syntax is given later in Fig. 3 using
BNF [18] notation, while the formal semantics are given in Fig. 7
using operational semantics notation [19], [20].

Because BHDL is based on Racket which roots back to LISP,
BHDL uses nested pairs of brackets to control the structure. A
circuit design begins with the keyword circuit which, optionally,
follows the circuit name. The circuit name can be used later as a
function to instantiate an instance of a circuit, like a constructor for
a class in OOP. A circuit definition consists of 4 clauses: pin, part,
wire, layout. One may consider the pin clause as declaring the
arguments and returns, the part clause as calling other functions,
and the wire clause as other code in the body of the function.

(a) Schematic

(circuit RC
(pin In Out GND)
(part [R1 (R In Out)]

[C1 (C Out GND)]
)

) ; end circuit

(b) BHDL code

Fig. 1: An example RC circuit

A. The pin syntax

The pin syntax defines the interface signals, such as I/Os, power,
and ground, of a circuit so it can be hooked with other circuits to
form a bigger design. Such signal names are listed after the keyword
pin. A pin of a circuit can be referred later in a wire clause using
the dot operation, e.g., R1.2 means the 2nd pin of R1. In Fig. 1,
the simple RC circuit has three I/O signals, the In, Out, and GND.

B. The part syntax and circuit instantiation

In BHDL, every circuit, even the simplest parts like a resistor, is a
function. To instantiate a circuit instance, call the circuit function with
or without arguments and parameters, and then bind it with a variable.
In Racket or other LISP dialects, a function call is a prefix expression
(function-name argument-1 argument-2 ...)

BHDL extends it by allowing parametrizations with keywords and
default values for tasks unique to PCB design such as selecting
footprints and set resistances (see Sections II-E and III-A).

(a) Schematic

(circuit RC_button
(pin Vcc Out GND)
(part [RC1 (RC _ Out GND)]

[R2 (C _ GND)]
[btn1 (SW VCC _)]
)

(wire
(net R2.1 btn1.2 R1.1)

)
) ; end circuit

(b) BHDL code

Fig. 2: A BHDL circuit created for the RC circuit.

If arguments are used when calling a circuit as a function, the first
few shall match those defined in the pin clause. Hence function
calls with arguments mean connecting signals of the circuit under
construction (the arguments) to pins of the circuits begin called. In

Fig. 1, the two pins of R1 are connected to In and Out while those
of C1 are connected to In and GND.

In Fig. 2, RC1 is an instance of the circuit RC defined in Fig. 1,
whose last two pins are connected to the pins Out and GND of the
new circuit RC_button. The underscore _ in the first argument
of RC is a placeholder variable meaning that the In pin of RC1 is
connected to nowhere, for now. The similar usage is applied for R2
and btn1. In order to connect the three hanging-in-the-air pins, we
will introduce a new syntax wire.

syntax notes
Part 1: host language

prog ::= e . . . (expression)
e ::= a (constants)

| x (var)
| λx.e (function definition)
| (f e) (apply)
| let x = e in e (let-binding)
| (for ([x e] ...) ebody) (loop)
| (if econd etrue efalse) (conditional)

Part 2: circuit clause
| (circuit Xopt paopt c ...) (circuit X)
| (X pinopt ... vopt ...) (circuit instantiation)

pa ::= (param x ... [x e] ...) (circuit parameters)
c ::= (pin p . . .)

| (part [x e] . . .)
| (wire w . . .)
| (layout l . . .)

Part 3: wire clause
w ::= (net e.pin . . .) (the net syntax)

| (series w . . .) (the series syntax)
| (parallel w . . .) (the parallel syntax)
| (bus b . . .) (the bus syntax)
| e
| e.pin

b ::= ([e.pin . . .]) (bus clause variant 1)
| (e [pin . . .]) (bus clause variant 2)

Part 4: layout clause
l ::= (hstack alopt l ...) (horizontal layout)

| (vstack alopt l ...) (vertical layout)
| (rotate l degree) (rotation)
| (at l1 x y l2) (overlapping)
| e

al ::= center (default alignment)
| top | bottom | left | right

Fig. 3: Formal BHDL syntax. From top to bottom: λ-calculus syntax,
BHDL circuit syntax, BHDL wire connection syntax.

C. The wire syntax

The wire syntax in BHDL supports four kinds of connection
clauses: net, series, parallel, and bus, whose examples are
given in Fig. 4.

1) net: The very basic one, the net syntax, takes a list of pins to
declare a conventional “netlist” connecting all the given pins together.
In Fig. 4a, the BHDL code connects pin 1 of three resistors together.
Formally, in Fig. 7a, we define the value of nets(p1 ... pn) to be a
circuit y where the nets of y is a single netlist connecting all the
given pins.

2) series: The series syntax is used to specify parts con-
nected in series, such as the two resistors and a capacitor in Fig. 4b.

(net r1.1 r2.1 r3.1)

(a) net

(series r1 c1 r2)

(b) series

(parallel r1 r2)

(c) parallel

(bus (u1 [MOSI MISO CLK])
(u2 [MOSI MISO CLK]))

(d) bus

Fig. 4: Example schematics and BHDL code of four connection types.

The series syntax expects a list of parts, and the semantics is to
connect the left and right pins of each component in a series. For
a two-pin non-polarized device, like a resistor, BHDL will randomly
assign a pin as left and the other as right. For polarized devices
and devices with more than two pins, users and library authors can
choose which pins are treated as left and right. Dot operations
referring to pins can be used in series connections, e.g.,

(series r1 d1.cathode d1.anode r2)

where d1 is a diode while r1 and r2 are two resistors. The formal
operational semantic of the series is shown in Fig. 7b.

3) parallel: The parallel syntax is used to specify parts
connected in parallel, such as the two resistors in Fig. 4c. The
parallel syntax expects a list of parts, and the semantic is to
connect the left and right of each component in a in parallel. The
left and right here are handled similarly to the case for series.
The formal operational semantic of the parallel connection is
shown in Fig. 7c.

4) bus: The bus syntax is used to connect corresponding pins
of two or more entities such as the MOSI, MISO, and CLK pins of
two SPI ports in Fig. 4d. Using the bus syntax, this can be very
convenient and less error-prone compared with using series and
net syntax. As shown in Fig. 3 (the b ::= line), the BUS syntax
has two variants. The code in Fig. 4d is variant 2 where part name is
specified once because pins share the part name. It can be rewritten
into the more verbose variant 1 as
(bus ([u1.MOSI u1.MISO u1.CLK])

([u2.MOSI u2.MISO u2.CLK]))

where the part name is specified for every pin. The formal bus
semantic is shown in Fig. 7d.

The bus connection can be more useful when concurrently con-
necting many parts. For example, in Fig. 5, the bus syntax is used
to connect corresponding pins of Arduino boards of different form
factors. Correspondence between pins of different Arduino boards
is listed clearly in our bus syntax. The underscores are used as
placeholders for pins that do not exist for certain circuits.

5) Mixing and nesting wire syntax: The idea of utilizing left
and right pins in the wire semantics enables developers to mix and
nest the connection syntax in arbitrary depth. This allows BHDL to
easily declare relatively “long” wires for more complex circuits. An
example of nesting series and parallel is given in Fig. 6. If
using only the net syntax, the code is verbose and not readily as
pins and connections need to be specified individually. By nesting
series and parallel syntax, we can get a much more natural
and simple code in Fig. 6c where every part is used only once.

6) In-place part creation: In combination with the series and
parallel syntax, BHDL supports in-place anonymous component

(circuit ultimate_arduino_adapter
(part ...)
(wire
(bus
(uno [A0 A1 A2 A3 A4 A5 - - - D2 ... D13 GND 3V3])
(micro [A0 A1 A2 A3 - - - - - - ... - GND -])
(mini [A0 A1 A2 A3 - - A6 - - D2 ... D13 GND -])
(nano [A0 A1 A2 A3 - - A6 D0 D1 D2 ... D13 GND 3V3])
(mkr [A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 ... D13 GND 3V3]))

(layout ...)))

Fig. 5: A bus connection example for an adapter to bridge all
Arduino form factors. Ellipses are used for omission and do not mean
ranging.

(a) The circuit

(net r1.2 r2.1 c2.1)
(net r2.2 c1.1)
(net c1.2 c2.2 l1.1)

(b) It’s verbose in netlists

(series
r1
(parallel
(series r2 c1)
c2)

l1)

(c) Nest series and parallel

(series
(R 10)
(parallel
(series (R 20) (C 100))
(C 100))

(L 10))

(d) In-place part creation

Fig. 6: Convenience of using nested series and parallel, and
in-place part creation.

creation. This allows developers to create parts like resistors and
capacitors in-place when they are used, without the relatively tedious
workflow of creating parts beforehand, binding to a variable, and
referring to the parts in the field. In Fig. 6d, we extend the nesting
code to use in-place parts creation so that developers do not need
to refer to a previously created part. Because such components are
anonymous, we borrow the term “lambda functions” to call them
“lambda circuits.”

D. The layout syntax

PCBs are tightly coupled with physical layouts because it is close
to the final physical product. It can be tedious and inaccurate to design
the physical layout in the existing EDA workflow, e.g., repeatedly
move parts around, or compute coordinates using external tools
and then import. Users could specify absolute global coordinates
in existing EDAS tools. However, it makes hierarchically compose
higher-level designs extremely difficult.

Inspired by JITPCB [5] and the functional picture library Pict [21],
BHDL provides several simple but powerful relative layout combi-
nators, enabling a hierarchical co-design of physical layout. The idea
is to specify the relative location among components, such as “left
of” and “above”. The layout is hierarchical: developers can lay out
the sub-circuit first, and the placed circuits can be directly used to
layout a bigger circuit, using the same set of layout primitives.

Formally, the syntax of layout is shown in Fig. 3. We provide
four simple layout combinators, namely hstack (horizontal stack,
left-to-right), vstack (vertical stack, top-to-down), rotate, and
at. For hstack and vstack, an optional alignment argument
can be specified, which defaults to center alignment, and can be
chosen also from top, bottom, left, or right. The spacing
between the components can also be specified pragmatically, and is
omitted here for simplicity. rotate turns the circuit by a degree,

y.nets nets(p1, ..., pn)
y.L p1 y.R p1

(net p1...pn) y

(a) net semantics

Ni,j nets(xi.R, xj .L)
y.nets N1,2 ∪ ... ∪Nn−1,n

y.L x1.L y.R xn.R

(series x1 . . . xn) y

(b) series semantics

N1 nets(x1.L, ..., xn.L)
N2 nets(x1.R, ..., xn.R)

y.nets N1 ∪N2

y.L x1.L y.R x1.R

(parallel x1 . . . xn) y

(c) parallel semantics

Ni nets(x1.pi, . . . , xn.pi)
y.nets N1 ∪ ... ∪Nm

y.L None y.R None
(bus (x1[p1 . . . pm])

(bus . . .
(bus xdfsxx(xn[p1 . . . pm])) y

(d) bus semantics

X.pin {q1, ..., qn}
Ni nets(x.qi, pi) y.nets N1 ∪ ... ∪Nm

y.L None y.R None
(circuit (part [x (X p1 ... pn)] ...) ...) y

(e) Circuit Instantiation semantics

Fig. 7: Formal BHDL semantics. In the notation, the operator
should be read as “reduce to”. Below the long horizontal line, the
code to the left of is resolved to y which is further defined above
the line. The nets(xi.R, xj .L) means a netlist consisting of two pins,
the “right” pin of xi and the “left” pin of xj .

(layout
(hstack

(vstack btn1 btn2 btn3)
esp01))

Fig. 8: A layout example.

and at defines the offset (x, y) between two parts. With these layout
combinators, users can compose the layout of a circuit hierarchically
and functionally, together with the design of the circuits.

We show a layout example in Fig. 8. The vstack clause stacks
three pushbuttons (btn1 btn2 btn3) vertically, default aligned in
the middle. The hstack clause further places the 3-button group and
an ESP01 module (esp01) from left to right, default aligned in the
center.

E. Embedding BHDL into the host language

In this section, we illustrate how BHDL can be used together
with host language constructs. In Fig. 3 Part 1, we show the
language constructs available in the host languages, including variable
binding, function definition and application, and control flows such
as conditionals and loops.

Our circuit DSL embeds inside the host language naturally,
and can interact with the host language in two complementary
ways. Firstly, the BHDL circuit is a first-class value inside the host
language, and it can appear anywhere a value is expected. A circuit
can be bound to a variable, passed as an argument to a function, as
well as an expression constituting a function body or let-expression
body. Secondly, we can use host language constructs inside the BHDL
circuit clauses, including part, wire, as well as layout.

We show an example circuit in Fig. 9. In the part clause, we
define a list of buttons using a for-loop. Each of the buttons is
connected with a pull-up resistor in series across the battery. The
joint between the button and the pull-up resistor is connected to a

(circuit TripleButton
(param [mode "Release"]) ; keyword parameters
(part [buttons (for ([i 3]) (SW))]

; create an array of 3 switches by
; calling the circuit/function SW thrice
[bat1 (Battery '3V)]
[u1 (ESP01)]

); end part
(wire
(net bat1.pos u1.VCC)
(net bat1.neg u1.GND)
(for ([btn buttons]; Python: for btn in buttons:

[ctrl_pin (list (if (= mode "Release")
u1.CH_PD
u1.RST ; else case

); end if
u1.GPIO0 u1.GPIO2

); end list
])

(series bat1.pos (R '10k) btn bat1.neg)
(net ctrl_pin btn.1)

) ; end for
); end wire

)

Fig. 9: An example of using function, branch, and loops with BHDL

pin of the ESP-01. By using a for-loop in the wire clause, we can
create three copies of the resistor-button series circuit, and connect
each of them with one pin of u1. Instead of writing three series
clauses and three net clauses, we only need to write the template for
one iteration. Further, we create two versions of the circuit, controlled
by the parameter mode. The two versions differ in the dash-lines in
Fig. 9 that only one of them should become an actual wire depending
on the mode. We use an if statement to make the selection. When
mode is Debug, u1’s CH_PD is hooked with the left most button.
When mode is Release, it is u1’s RST. This circuit can then be
called to generate two versions with different values for the parameter
mode:
(TripleButton #:mode "Debug"); code for version 1
(TripleButton #:mode "Release"); code for version 2

III. SYSTEM AND IMPLEMENTATION

A. Part Library Management

BHDL uses an additional footprint syntax in a circuit
definition to simplify the effort to associate the circuit with a
footprint. Beginning with the keyword footprint, a footprint
clause is immediately followed by a package name, and then the pin
names in the order defined in the footprint file. For example, a resistor
can be defined in BHDL as simple as
(circuit R [value '10k]

; default value for resistors is 10kOhm
(import "https://github.com/KiCad/kicad-footprints/blob/
master/Resistor_SMD.pretty/R_0603_1608Metric.kicad_mod"

as 0603)
(pin 1 2)
(footprint 0603 1 2))

where pads 1 and 2 are defined in a footprint library. The import
clause allows users to rename a footprint name, usually lengthy, to
a short name. The first argument of the import clause can be a
footprint in the current search path, an absolute or relative file path, or
an Internet URL. The ability to import from an Internet URL allows
BHDL to have instant access to a large collection of existing high-
quality open-source footprint libraries. Currently BHDL supports the
KiCAD-format footprint library but can be extended easily later.

A circuit can have multiple footprints for users to select. For
example, the code

[r (R _ _ '100k #:fp 0603)]

selects 0603 package for a resistor and sets the value to 100k from
default 10k (the first argument after pins is reserved for value
for convenience). BHDL assumes default values for parameters.
For footprints, the first footprint defined in a circuit is the default
footprint. Thus, there will be no difference if the footprint parameter
is not selected in Fig. 1.

A more complex example is given in Fig. 10 where the 8 pins
of an ATtiny25 are associated with DIP-8 and QFN-20 packages.
Because ATtiny25 occupies only 8 out of the 20 pins that QFN-20
provides, unused pins are indicated by the special placeholder symbol
underscore. In addition, to make pin referencing easier, here we use
an extended pin syntax that each pin can be a list of names, for
example, PB0 can also be called SDA. The example also introduces
the prefix syntax so parts can be named and/or numbered starting
from the prefix.

(circuit ATtiny25
(pin

[PB0 SDA]
[PB2 SCL]
[PB3 XTAL1]
[PB4 XTAL2]
[PB5 RESET])

(footprint DIP-8
PB5 PB3 PB4 GND
PB0 PB1 PB2 VCC)

(footprint QFN-20
PB5 PB3 - - PB4
- - GND - -
PB0 PB1 - PB2 VCC
- - - - -)

(PREFIX 'U))

(a) BHDL code (b) Footprint rendered with pin names

Fig. 10: An example of footprint management

B. Auto-Placement

An autoplacer finds locations for parts to meet layout constraints
specified by users in BHDL, as well as parts that are free from
constraints. Automatic placement has been intensively studied in
the VLSI domain [13], [22], [23]. But much less attention has
been paid to the placement problem for PCBs. We initially tried to
port some publically available autoplacers [13], [23] for VLSIs to
PCB placement. But it was not successful, probably because such
autoplacers target the VLSI problems, and are not suitable for PCBs.

We thus present our implementation of auto-placement engine
for PCBs. We implement the state-of-the-art analytical global placer
RePlace [13], [24]–[26]. The RePlace algorithm optimizes the total
wirelength (HPWL). However, directly applying the algorithm may
place components too close to each other, reducing the routability.
Tuning the density penalty of RePlace formulation is tricky to achieve

desired component separation. We apply a simple and effective ap-
proach to easily control the density at a higher-level. In particular, we
introduce an padding parameter that enlarge components’ footprints
by the padding before feeding into the placement engine. It has shown
promising and effective control over the placement density, and is
easy to tune.

We also implement a simulated annealing (SA) detailed placer [14]
to legalize the local overlapping. One special placement constraint for
PCBs is that PCB components are typically much larger and more
irregular than VLSI cells, and rotation is desired to fit the components
in small space. Thus in the SA-based detailed placer, in addition to
the random walk in horizontal and vertical directions, we introduce
a third dimension to rotate the components by random angles. This
enables our placer to successfully rotate components in small space
and generate valid placement result when non-rotating placer fails to
solve.

C. Implementation Details and User Interface

We implement our system in the Racket [10], [11] language frame-
work, because it has a rich set of tools for building syntax abstractions
and DSLs. Our auto-placer implementation is done in a higher-level
Julia [27] programming language, for Julia is easier to debug and
extend, with efficient and straight-forward GPU acceleration [28].

The development model of BHDL follows the Read-Eval-Print
Loop (REPL) [15] inherited from Racket. In particular, the BHDL
code is not just compiled to the output KiCAD board every time the
design changes. Instead, it is an incremental process that the circuit
definitions are read and evaluated, and user can interact with the
running process and incrementally edit the code to tune their circuit
design. In addition, we use the Jupyter [16] notebook as the preferred
development environment because it is easy to run code blocks and
get results and board visualization directly besides the code blocks.

A screenshot of a BHDL Jupyter session is given in Fig. 11 show-
ing different stages of using our system: incremental development of
a circuit on the left (left column), rendering of auto-placement result
(top-center and top-right), and exporting files in KiCAD PCB format
(bottom-center, exportable to Gerber for manufacturing) and Bill of
Material (BOM, bottom-right). In particular, the top-center circuit is
an agronomic keyboard. Our layout syntax makes specifying the
relative positions and orientations between keys very convenient.

IV. CONCLUSION

In this paper, we propose BHDL, a declarative, simple, modular,
and expressive HDL and system for efficient PCB design. BHDL
expresses circuit connections naturally by providing simple and
intuitive syntax that can be mixed and nested, with well-defined
formal semantics. Our system also features programmatic hierarchical
co-design of physical layout as well as adapted state-of-the-art auto-
placers to turn the designs into physically placed PCB boards. BHDL
is open-source and shipped with REPL-driven Jupyter environment
for interactive and incremental development.

We hope our framework can be a platform to facilitate the
research to revolutionize PCB development. Our language and system
will make the creation and analysis of PCBs and tasks on PCBs,
such as verification, simulation, placement, and routing, much more
systematic, as a code-based representation of PCBs are much more
easier to be analyzed. Techniques developed in software engineering
can be ported to help PCB designs. With the declarative and compact
representation of PCB design problems, there are also opportunities
to incorporate deep learning and reinforcement learning automate or
optimize tasks in PCB designs.

Fig. 11: Jupyter Development Environment for BHDL, showing example code, layout renderings, BOMs, and KiCAD-format PCB file.

REFERENCES

[1] R. Lin, R. Ramesh, A. Iannopollo, A. Sangiovanni Vincentelli, P. Dutta,
E. Alon, and B. Hartmann, “Beyond schematic capture: Meaningful
abstractions for better electronics design tools,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. ACM,
2019, p. 283.

[2] “IEEE standard for VHDL language reference manual,” IEEE Std 1076-
2019, 2019.

[3] “IEEE standard for SystemVerilog–unified hardware design, specifica-
tion, and verification language,” IEEE Std 1800-2017 (Revision of IEEE
Std 1800-2012), 2018.

[4] B. Nelson, B. Riching, and R. Black, “Using a custom-built HDL for
printed circuit board design capture.” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2012.

[5] J. Bachrach, D. Biancolin, A. Buchan, D. W. Haldane, and R. Lin,
“JITPCB,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 2230–2236.

[6] “Stanza language,” http://lbstanza.org/, accessed: 2020/09/30.
[7] “JITX.com,” https://www.jitx.com/, accessed: 2020-09-30.
[8] “SkiDL,” https://github.com/xesscorp/skidl, accessed: 2020-09-30.
[9] “PCBDL,” https://github.com/google/pcbdl, accessed: 2020-09-30.

[10] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzi-
lay, J. McCarthy, and S. Tobin-Hochstadt, “The racket manifesto,” in
1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[11] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay,
J. McCarthy, and S. Tobin Hochstadt, “A programmable programming
language,” Communications of the ACM, vol. 61, no. 3, pp. 62–71, 2018.

[12] “Racket programming language,” https://racket-lang.org/, accessed:
2020/09/30.

[13] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717–1730, 2018.

[14] C. Sechen, VLSI placement and global routing using simulated anneal-
ing. Springer Science & Business Media, 2012, vol. 54.

[15] H. Abelson and G. J. Sussman, Structure and interpretation of computer
programs. The MIT Press, 1996.

[16] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,

“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.

[17] “FreeRouting,” https://github.com/freerouting/freerouting, accessed:
2020-09-30.

[18] D. Crocker and P. Overell, “Augmented BNF for syntax specifications:
ABNF,” RFC 2234, November, Tech. Rep., 1997.

[19] G. D. Plotkin, “A structural approach to operational semantics,” Com-
puter Science Department, Aarhus University Denmark, Tech. Rep.,
1981.

[20] G. Winskel, The formal semantics of programming languages: an
introduction. MIT press, 1993.

[21] “Functional pictures,” https://docs.racket-lang.org/pict/, accessed: 2020-
09-30.

[22] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl, “Multilevel optimization
for large-scale circuit placement,” in IEEE/ACM International Confer-
ence on Computer Aided Design. ICCAD-2000. IEEE/ACM Digest of
Technical Papers (Cat. No. 00CH37140). IEEE, 2000, pp. 171–176.

[23] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“NTUplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1228–1240, 2008.

[24] J. Lu, P. Chen, C.-C. Chang, L. Sha, J. Dennis, H. Huang, C.-C.
Teng, and C.-K. Cheng, “ePlace: Electrostatics based placement using
Nesterov’s method,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2014, pp. 1–6.

[25] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “ePlace-MS: Electrostatics-based
placement for mixed-size circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp.
685–698, 2015.

[26] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled GPU acceleration for modern VLSI
placement,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC), 2019, pp. 1–6.

[27] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, 2017.

[28] T. Besard, C. Foket, and B. De Sutter, “Effective extensible program-
ming: unleashing Julia on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 827–841, 2018.

http://lbstanza.org/
https://www.jitx.com/
https://github.com/xesscorp/skidl
https://github.com/google/pcbdl
https://racket-lang.org/
https://github.com/freerouting/freerouting
https://docs.racket-lang.org/pict/

	Introduction
	BHDL Syntax and Semantics
	The pin syntax
	The part syntax and circuit instantiation
	The wire syntax
	net
	series
	parallel
	bus
	Mixing and nesting wire syntax
	In-place part creation

	The layout syntax
	Embedding BHDL into the host language

	System and Implementation
	Part Library Management
	Auto-Placement
	Implementation Details and User Interface

	Conclusion
	References

